

FLASH Whitepaper 1

FLASH Whitepaper 2

Contents

Abstract .. 1

Introduction ... 3

Legal Compliance ... 4

The FLASH Philosophy and Applications.…….. 5

FLASH Architecture Overview 7

FLASH Governance and Processing Overview …… 11

FLASH Web Wallet Account Structure + Key
Generation, Storage and Recovery 27

FLASH Blockchain .. 31

Appendix: Wallet Webservice API 33

FLASH Whitepaper 3

Introduction

The fundamental principle of FLASH is that all work or contributions to

the network should be valued by the community in an objective fashion.

Allowing the free market process to function creates a mechanism

whereby all forms of work can be reduced to a common denominator -

- FLASH.

Any form of work, be it valuable time, a user’s work and attention, a

special skill set such as developing tools, various forms of energy (ie

processing) and settlement can be valued in real time based on the

market supply and demand for that specific work/contribution.

The ways to contribute to the community are only limited by one’s

imagination and the community’s collective valuation of it. At its core

FLASH is simple to understand, completely transparent and distributed

governance with no complicated rules and conditions that are hard to

work with. We put the trust in the community and the technology.

Because FLASH has a very simple and fast settlement system along

with many tools for community members, it will have many use cases.

FLASH has no defined value; it can be freely exchanged by community

members who decide independently the disposition of their private

property.

FLASH Whitepaper 4

Legal Compliance

FLASH, like Bitcoin, was designed from the ground up to be

legally compliant. Originally based on a fork of Litecoin, the

technology was developed in Canada by Flashnet Tech, Inc. with

support from donors who received Counterparty assets called

FLASHPRE and MEGAFLASH. No US donors were allowed. A

community member in Vietnam then mined the entire supply of

FLASH and they were given to an anonymous community

member to distribute. The entire pre-mined supply of FLASH

coins were airdropped for free to community members and people

who tested FLASH. The coin had no value when it was

distributed, nor is there any defined value to FLASH.

To date, ~818m coins have been claimed and circulate, while

~82m FLASH remain unclaimed as of May 1, 2018. Following

the completion of the first version of the FLASH software and

distribution of FLASHPRE, MEGAFLASH and FLASH coins,

Flashnet Tech was shut down and the Third Millennium

Foundation for Economics and Culture was created in

Liechtenstein to support community coins and promote the

FLASH technology. FLASH is a protocol maintained by the

community. It is not any kind of legal entity or company of any

kind, it has no employees, contracts and no standing of any kind.

It’s an idea in the public domain.

FLASH Whitepaper 5

The FLASH Philosophy
and Applications

The FLASH blockchain is run as a not for profit, public service by the FLASH

community. No commercial activity is conducted in the operation of the FLASH

blockchain, as the design goal was to make using FLASH nearly free. FLASH is

ideal for use in any country, it’s original design was for developing countries, where

fast and cheap transactions are necessary. Commercial activity is conducted inside

applications that utilize the blockchain, which can have wallet functions, or they

directly access the blockchain or the API. Economic incentives can be created by

applications that use the FLASH blockchain, building fees directly into the apps

when transactions or other services are conducted.

Applications that are being built with FLASH by various app developers include:

• Media and gaming. FLASH is ideal to reward content creators

and players in far flung locations.

• Personal Exchange (aka Human ATM). Developing countries do

not have the banking infrastructure of developed countries. This

creates vast opportunities for the Personal Exchange, a very

simple and fast way to trade crypto coins in person or over the

internet anywhere it’s legal.

• Remittance. Because FLASH is a low cost coin, as soon as

exchanges are created in different countries, it becomes possible

to do rapid and low cost remittances, either via exchanges or

Personal Exchange.

• FLASH Web Wallet. The fastest and most convenient way to get

started with FLASH; there is nothing to install, just a quick signup

via email. The FLASH Web Wallet will soon include a social send

feature.

FLASH Whitepaper 6

• FLASH Android Wallet. Android has 75% worldwide market share

and leads in developing countries by a wide margin. A wallet with

simple send and receive,

• 25 languages and Personal Exchange toolset including client

discovery, interactive map (using location services) and chat.

• (future) Circumvention. This will use FLASH nodes to relay

transactions, messages and files via a distributed network.

FLASH will be the gas.

• (future) DEX Blockchain Marketplace. FLASH can be used as a

signalling plane to announce offers to buy or sell cryptocurrencies

in a decentralized manner.

FLASH Whitepaper 7

FLASH Architecture

Overview

FLASH IS A PREMINED, DECENTRALIZED BLOCKCHAIN, BASED ON THE ORIGINAL

BITCOIN/LITECOIN BLOCKCHAIN. IT HAS BEEN OPTIMIZED FOR SEVERAL VERY

SPECIFIC USE CASES:

1. Compatibility with BTC/LTC which makes FLASH very easy to add to
new exchanges (only a few hours) and port to open source software
tools such as the Trezor hardware wallet.

2. High performance. Transactions can settle in less than 2 seconds, but
usually under 5 seconds and coins can be immediately re-sent to
another community member. Final permanent settlement happens in
under 2 minutes.

3. Highly secure. A number of security flaws with the original bitcoin
blockchain have been patched. The platform has been enhanced with
Curve25519 Elliptic Curve encryption, which is now standard on
BTC/LTC.

4. Commercial scale throughput capability. Delegating the mining allows
much greater capacity of the system. Real world testing of actual live
net throughput will be forthcoming.

5. Low cost and environmentally friendly. Removing nearly all of the
expensive mining removes a lot of the cost most proof-of-work (PoW)
cryptocoins add through inflation or high transaction fees.

6. Designed for communities, it is a community coin, issued and used by
a community, it is not a utility or security token. The FLASH blockchain
is nearly free, while commercial users are free to use this blockchain
to build applications using FLASH and charge fees, sending FLASH
directly into the app developer’s or partner’s wallets.

7. A web wallet with easy to use features including Send using email or
public address, transaction history, request FLASH, QR code support,
contacts, 2 Factor Authentication (2FA), merchant tools and key
recovery.

FLASH Whitepaper 8

8. Third party wallets including Qt, Coinomi, CoinPayments, ETHOS and
Android wallets are supported. Support for the Trezor hardware wallet
is expected soon.

In order to reach these critical metrics for wide scale use by millions of community

members the FLASH platform uses a model with delegated governance and

minimal mining. The platform leverages both the existing distributed database

technology with blockchain technology characteristics, decentralized control,

immutability and creation and movement of digital assets.

FLASH Whitepaper 9

The FLASH web wallet system builds upon three tier application platforms. Like most
standard systems. we have User Interface, Communications, and Business Logic /
Storage tiers.

The User Interface Tier enables the end user or application to interact with the FLASH
blockchain. The FLASH web wallet platform leverages HTML5, CSS3 and JavaScript
on the browsers, with no extensions, enabling seamless cross browser support. We
have developed and adopted all technologies that enable JavaScript to do what C/C++
and Java are able to do. In addition, the FLASH System uses Twitter Bootstrap to
provide a responsive web framework that works on any device.
The Communication Tier enables a secure tunnel between the User Interface Tier and
the Business Logic / Storage Tier without the need for OpenSSL. The secure protocols
used by the FLASH web wallet includes:

Our work in the area of communication also means that we are an early adopter of new
secure protocols that run over JavaScript using HTML5.

The Business Logic / Storage Tier enables all of the transaction flows, business logic,
and networking systems to be stored and operated within this layer. This tier is
responsible for executing proprietary algorithms to store in the distributed database,
which power FLASH.

 The Key Exchange Node is a horizontal cluster of servers that provide
key exchange or key lookup for every transaction on the FLASH
System, like an index that runs alongside the blockchain to look things
up faster. In the near future, these nodes will be decentralized. Due
the nature of cryptographic key pairs on the Bitcoin transactional
system, every transaction requires a public wallet address lookup. Key
exchange needs to act as the public address registrar. The Key Node
also allows currency exchange, messages, public escrow and other
information flow among peer- to -peer wallets. The message engine
has enabled logging and notification of all activities on the wallet
communication using Sendgrid email notification. The Key Node uses
NodeJS, ZeroMQ, Redis, and MySQL and is hosted by various
community member for the benefit of the community.

 The FLASH Web Wallet Application is a horizontal scaling server
application that enables all FLASH Wallets to be used from different
Web Browsers. The FLASH Wallet Application has most of the Bitcoin
Wallet functionalities and key exchange functionalities. It’s a virtual
online wallet using the HTTP Protocol / Web Sockets. Additionally, Qt
wallets with source code have been provided without mining for
Windows, Mac and Linux. Exchanges are supported by FLASH.

 The Web Service API Servers pre-process, convert and index all the
FLASH transactions from the Web Interface and send them to the
blockchain. This significantly speeds up the transactions as each
wallet doesn’t need to sync all blocks from the blockchain of local
server. All wallets can share the blockchain on the Blockchain API

FLASH Whitepaper 10

server. This improves the transaction performance significantly due to
the reduced network latency for each wallet synchronization. Another
very important aspect of the technology is the significant reduction in
the possibility of “double spending”. All blockchain transactions are
indexed, preprocessed and validated through the Gateway Server in
a manner similar to Bitcoin.

 The FLASH Blockchain is a fork of Litecoin technology. A number of
significant modifications have been made. The settings have been
changed in order to speed up the

transactions to the blockchain. All the coins have been pre-mined and
the mining has been reset to just above the minimal degree of
difficulty factor. Up to 151 staked Delegate nodes will be selected by
the FLASH community at large. Each Delegate is required to keep a
minimum of 1 million FLASH staked in a Qt wallet. These Delegates
elect up to 25 miners and determine the governance of the FLASH
blockchain, transaction fees and other matters. The Delegates and
Miners share the transaction fees and a pool of donated FLASH from
the community. Miners are approved by the Delegates.

 The purpose of the FLASH Blockchain is to replace the traditional
transactional database with a network storage database and include
an end- to- end security data structure.

Transaction Fees are currently set to 0.001 FLASH per transaction,
these fees may be raised or lowered in the future, depending on voting
by the elected Delegate nodes.

FLASH Whitepaper 11

Flash Governance and
Processing Overview

Abstract

FLASH will implement a new delegate-based consensus model which relies on trusted delegates

elected by the community to rapidly reach consensus on the blockchain and ensure its security.

Every user will be able to use coins they control to cast votes for delegates. Elected delegates will

vote on matters relating to the network such as transaction fees and miner selection. Delegates elect

a small set of 25 miners and these miners are the only nodes that are allowed to create new blocks

on the blockchain. Rather than using PoS or PoW to secure the chain, a set of rules is enforced by

the network to control the ordering of block generation rights which are granted to the set of trusted

miners. This new delegate model maintains a high degree of network security while at the same time

enabling very high transaction throughput.

It is really simple actually: if >50% of the Elected Miners “vote” that a block is valid, then that block is

permanent and can never be undone. The “vote” is cast by the Elected Miner creating a block in the

chain that comes after the block in question. The block chain goes like block 1 → 2 → 3 → 4, etc. So

if >50% of the Miners build a block in the chain after block 1 then we know block 1 is legit and

permanent. No node will ever accept a conflicting blockchain that tries to say block 1 is invalid.

Network Entity Types

There are three types of entities on FLASH’s new network:

1. Normal users

2. Delegates

3. Miners

Normal Users

Any FLASH address holding Flashcoin is considered a normal user for the purpose of this discussion.

Just like in Bitcoin, there are no on-chain user identifiers, just UTXO’s controlled by pseudo-

anonymous addresses.

Delegates

Delegates are elected by normal users. Delegates must run for election by staking a minimum of

1,000,000 FLASH and providing information about themselves, including a Delegate ID. Users use

the coin they control to vote Delegates into office. Once Elected Delegates can vote on matters

relating to the FLASH network. Each Delegate places votes which are weighted based on:

1. The amount of FLASH they’ve staked

2. The amount of votes they’ve received

3. How long they’ve been in office (seniority)

FLASH Whitepaper 12

Delegates are elected for a period of 30 days at a time. Votes for Delegates can be cast at any time,

but they are only evaluated once every 30 days for the changing of seats. A maximum of 151

Delegates will be allowed. If there are more than 151 nodes running for election as a Delegate then

the top 151 based on the criteria above will be elected.

Delegates must stake their coin to begin running for election, and their coin must remain staked for

the entire election period. Third-parties may also stake coins for any given Delegate but those staked

coins are locked up for the entire election period and term in office the same as if the Delegate had

staked the coins themselves. Delegates can remove themselves from the running for the next

election cycle at any time, but their coins must remain staked for the current cycle. Delegates will be

automatically removed from office if they become inactive.

Delegates receive a portion of the network transaction fees as compensation for their duties.

Permanent Delegates

Of the 151 Delegates, 50 are Permanent Delegates who do not require voting via elections. These

Permanent Delegates are otherwise the same as elected Delegates; they must stake the minimum

1,000,000 FLASH, their vote weight is based on the same factors, they can be Miners, they are

compensated the same and have the same requirements except the minimum staking requirement to

mine is 1,000,000 FLASH instead of 2,000,000 FLASH required by Delegates. Permanent Delegates

do not have to run for election.

Permanent Delegate positions are held initially by those who have contributed to the strength and

well-being of the FLASH ecosystem; these positions are transferable.

If a Permanent Delegate does not stake the required minimum of 1,000,000 FLASH, or they become

inactive, they maintain their position as Permanent Delegate but cannot act as Delegate until in good

standing or until this role is transferred to someone who meets the requirements for good standing.

Miners

Only Delegates can become Miners, and they do so by signalling that they wish to be a Miner and by

gaining support from their fellow Delegates in the form of votes and by having staked a minimum of

2,000,000 FLASH. The minimum staking to mine for Permanent Delegates i initially set to 1,000,000

FLASH. Delegates are therefore responsible for voting-in only high-quality and trustworthy miners.

The number of Miners is kept low, at a maximum of 25, in order to support high block rates across the

network and high transaction throughput. The larger the mining pool is the less efficient it becomes,

and FLASH’s limited Miner count is an optimal balance of redundancy, security, and performance.

Miners receive a portion of the network transaction fees as compensation for their duties.

Transaction Fees

At network bootstrapping there will be a default fee of 0.001 FLASH per kilobyte, with a minimum fee

of 0.33 FLASH. The transaction fee rate and minimum are parameters that Delegates can vote to

adjust in the future. Transaction fees are not collected per-block by the miners, rather they are

collected once per day and distributed to both Miners and Delegates.

Staking Mechanics

In order to run for election a person must create a FLASH address to represent their node. The

candidate will then be identified by that address and the actions they take will be signed with the

associated private key. To enter the election the candidate can use the Qt wallet to create and

FLASH Whitepaper 13

broadcast their node’s registration form along with their FLASH stake. All registrations and stakes

are sent to a special election address from which the network will not allow spending, except to return

the staked coins back to the sender at the sender’s request. Strict rules are enforced on the

acceptance and return of funds to and from the special election address.

Delegates must stake a minimum of 1,000,000 FLASH to register for election. The more coin staked

for a Delegate the more easily they can become elected, the more influence they will have on future

votes, and the more reward they will receive. Additional stake contributions can be made for a

Delegate by any person at any time, however all staked funds will remain locked for the entire

election campaign as well as for the subsequent election term(s) if that Delegate is elected.

Voting Mechanics

Every transaction has the opportunity to vote for a Delegate by prepending a zero-value transaction

output to that transaction that uses the OP_RETURN opcode followed by new voting related opcodes

and data. Voting related OP_RETURN tx outputs must always be the first tx output. The sender of a

transaction is able to use this OP_RETURN metadata to specify which delegates get how much of

the transaction’s voting power.

The Qt wallet will make managing a user’s votes as easy as possible by showing which coins in their

wallet are voting for which Delegates and which coins are not voting at all, and automatically

managing the casting of votes according to the configuration specified by the user. Voting is not

required in a transaction, but it is encouraged for the security of the network.

This method where the sender sets the voting metadata has an unfortunate side-effect on the user

experience: every time a person receives FLASH they will need to send it back to themselves along

with their vote if they want that FLASH to be used to vote in a different way than the sender specified.

The Qt wallet can be configured to do this automatically so that it is barely noticeable to the user.

This is an annoyance and will generate some redundant transactions as users re-send funds to

recast votes, but this method allows for a dramatically more efficient accounting and scaling for the

voting system than other methods. The need to resend transactions to recast votes can also be

leveraged to combine dust and other transactions to reduce the total UTXO set.

Voting done by Delegates on matters relating to the network are handled differently than user votes.

When a Delegate votes they send a transaction to a special voting address with data attached

indicating what they are voting on and what their vote is. No Flashcoin need be sent to vote, however

normal network transaction fees do apply. A Delegate’s vote can come from any address but the

vote data must be signed by that Delegate’s private key.

Mining Mechanics

Miners are elected by Delegates, and only Elected Delegates can become a Miner. Delegates vote

for Miners with their vote-weight which is derived from coin stake, user votes, and seniority, and they

spread their vote-weight over as many or as few miners as they like. The top 25 Miners, scored by

accumulated vote-weight in the ballots, become the Elected Miners. If an Elected Miner is identified

as a bad actor, or as an unreliable node, then Delegates can update their votes and remove that bad

Miner in 1 block.

Miners must maintain an accurate system clock and have a low-latency and high-bandwidth network

connection in order to effectively participate as a Miner. The system is tuned to generate a block

every 5 seconds, however when the network is idle then no blocks need be emitted. Clock skew in

FLASH Whitepaper 14

the block timestamp will have a maximum allowance of +4 seconds in the future, and no block can

have a timestamp earlier than the block before it. When a Miner creates a block they place their

Delegate ID in the coinbase transaction for identification purposes, along with a signature to prove it

is them.

There is no block reward for Miners to claim, no per-block transaction fees to claim, and therefore no

incentive to mine blocks as fast as possible. Block difficulty is fixed at a very low value so that there

is no hashpower arms race; any modern CPU can hash a block in under a second.

To secure the blockchain strict rules are enforced to control the order in which Elected Miners are

allowed to create blocks. Each Elected Miner is assigned a single 5 second window in which they

can create a block, if a block is needed, and then the next Miner in the list gets their own 5 second

window. This ordered timeslot assignment prevents conflicts over who will mine the next block,

thereby reducing the amount of bandwidth and processing that is usually wasted in high block-rate

networks as conflicting chains are passed around and evaluated. This timeslot assignment also

ensures that every Elected Miner has a fair chance to create a block.

To assign timeslots to Miners a function similar to the following JavaScript function will be used:

function canItMine(minerPosition, timestamp){ return ((timestamp % 25) == minerPosition); }

There is a list of currently Elected Miners that is maintained by each node, and it is updated as Miners

are voted in and out. A Miner’s “position” is the index in the Elected Miner array that corresponds to

that Miner. When a Miner is checking if it can mine right now it passes its own position into the

“canItMine” function along with the current system time in unix format. When a node is evaluating a

block for correctness before accepting it then it passes the position of the Miner who mined that block

into this function along with the timestamp from that block.

Because each block creation asserts that the creator believes the chain of blocks before it are true

and accurate, each block mined is effectively a vote by the Miner on what the correct current chain is.

At any given time there is a Consensus Height, a block height at which consensus has been achieved

by >50% of the Elected Miners, and this Consensus Height increases as new blocks are mined. For

any given block B, if >50% of the Miners in the Elected Miner pool have each created a block in the

chain above B then consensus has been achieved for B and all transactions in and before block B are

guaranteed to be final. The Consensus Height, then, is at B.

All transactions included at or below the Consensus Height are considered final, and all transactions

above the Consensus Height are in the process of being finalized. “Confirmations” are no longer a

measurement of how many block have been built on top of a given transaction’s block, instead

“confirmations” is a measure of how many Elected Miners have mined a block on top of that

transaction’s block, divided by how many Miners are needed to achieve consensus. Therefore

“confirmations” is effectively the percentage of consensus a given transaction or block has achieved.

Given a transaction T which was included in block B, if 20 blocks were built on top of B by 10 unique

Miners from the 25-Miner pool of Elected Miners, then T and all other transactions in B have a

consensus percentage of:

10 (miners’ blocks) / 25 (in pool) / 0.5 (for 50% consensus) = 0.8 consensus

 = 80 ‘confirmations’

FLASH Whitepaper 15

Once a transaction has reached or exceeded 100 “confirmations” then it is final and there is no risk of

it being rolled back in a double-spend. All calculations and readouts for “confirmations” will be

capped at 100 to reduce confusion.

As long as an attacker is not able to compromise more than 50% of the Elected Miner pool then

double spending of a given transaction is impossible once the Consensus Height has reached or

exceeded that transaction’s block. If all of the Elected Miner pool remains online and mining blocks

then transactions will be finalized within approximately 65 seconds (>50% * 25 Miners * 5 second

blocks = 65). All valid transactions will be included in blocks within 10 seconds (5 second blocks * 2 =

10), and if all parties involved are trustworthy then that transaction may be actionable by the recipient

with confirmation by just a single Miner (5s avg, 10s max). For guaranteed finality when dealing with

untrusted parties the recipient should wait for 100 “confirmations”, which should take about 65

seconds. For comparison, pure Proof-of-Work and Proof-of-Stake systems never provide guaranteed

transaction finality without centralized checkpointing.

Blockchain Fork Resolution

As described above, there is a Consensus Height (CH) which increases as new blocks are mined.

No node ever accepts a blockchain fork that goes deeper than the current CH; the CH is effectively a

dynamic checkpoint that is voted into existence by the Miners. When there are two competing forks

above the CH then the fork with the most unique miners’ participation wins. If, for example, fork F1 is

10 blocks long but only 2 unique Miners made those 10 blocks, while fork F2 is 8 blocks long with

each block being mined by a unique Miner (8 unique Miners) then F2 wins. If both forks have the

same number of unique Miners participating then the longer fork wins.

If an Elected Miner is evaluating two forks and that Miner is able to mine a new block on either fork,

then it will do so prior to comparing the forks.

On initial blockchain sync a node may be poisoned by a malicious peer with an invalid blockchain,

and the rule that states that reorgs cannot be deeper that the current CH may prevent the node from

ever finding the true blockchain. If this happens then the node will need to first connect only to a

node on the correct blockchain, and after it finds a true CH then the node can openly connect to any

peer.

Votes by and for Delegates are only counted once the transaction that cast them has reached 100

confirmations (full consensus), with the exception of Miner selection. When a Delegate changes its

vote for Miners those votes are counted instantly and if the Elected Miner pool is changed as a result

then that change applies to the next block.

Network Idling

In the earlier years of any cryptocurrency network there may be long periods of zero transaction

activity. As layer-2 adoption grows that will also decrease the level of on-chain activity required for

layer-2 supporting networks. In order to avoid the senseless creation of empty or useless blocks the

new FLASH network supports idling. All incentives for Miners to mine blocks as fast as possible have

been removed, and nChainWork no longer exists, so the network can simply stop creating blocks

when there is no longer a need for them. A good deal of bandwidth and index space is saved by

idling, and it also keeps blockchain syncing as efficient as possible.

In order for the network to idle without negatively affecting users, the Miners must continue mining

blocks at the normal 5 second rate until there are no transactions above the Consensus Height. If the

FLASH Whitepaper 16

network is idle and then a single transaction is broadcasted then the Miners will begin mining blocks

immediately, and they will continue for approximately 13 blocks until that transaction has reached full

consensus, and then the Miners will go idle again until the next time a valid transaction is

broadcasted.

Miner and Delegate Reward Mechanics

Every day will start with a transaction that distributes earnings to Miners and Delegates. Earnings are

derived from network transaction fees - all fees over the last day are added up, split in half so that

50% goes to Miners and 50% goes to Delegates, and then they are allocated as described below.

The 50% for Delegates is allocated based on each Delegate’s vote-weight at the time of the reward

tx’s creation. The greater the vote-weight of a Delegate the greater their share of the reward.

The 50% for Miners is allocated equally across Elected Miners.

Foundation Rewards

The Third Millennium Foundation pledges to donate 32,000 FLASH to the Miners and Delegates

every day in the form of transaction fees. This will be done by using an automated process to send

one transaction a day from the FLASH Foundation’s wallet with a 32,000 transaction fee. These

donations will continue until SOME_EXPIRATION_DATE.

Voting Related Opcodes

The voting system requires sending signed voting metadata on the blockchain for all users to see. In

order to maintain backwards compatibility with all tools built for Bitcoin, this metadata is sent using the

standard OP_RETURN Bitcoin opcode in the script of a zero-value tx output. Bitcoin tools do not

parse OP_RETURN data, nor is this data stored in memory, only on disk. FLASH implements

several new voting opcodes which are only used after an OP_RETURN opcode, and these new

opcodes tell the parser how to interpret the metadata provided. List of new opcodes:

● OP_REG_DG: Delegate registration and information updates

● OP_STAKE_DG: Provide additional stake for Delegate

● OP_VOTE_DG: User vote for Delegate

● OP_DG_VOTE: Delegate vote on a network related matter

● OP_DG_SIGN: Used in coinbase tx to prove block creator’s identity

These new opcodes must be used in a zero-value txout script immediately after an OP_RETURN

opcode, and this zero-value output must be the first txout (position 0) in a transaction. Only the first

txout is parsed for voting opcodes, and only if that first txout starts with OP_RETURN.

Special Election Address

This is a valid FLASH address which has special rules for both receiving and sending transactions.

Coins being staked for Delegates are sent to this address, as is Delegate registration information. All

transactions into and out of this address must pay the normal network transaction fees. Nobody will

ever know the private key for this address, and even if it were somehow derived, the network only

allows coins controlled by this address to be returned to the specified return address or the original

sender, so they cannot be stolen.

FLASH Whitepaper 17

Receiving rules:

● There can be one or many tx inputs. If there is more than one input then a return address

must be specified in the voting metadata.

● The first OP_REG_DG for a given delegateID must send at least 1,000,000 FLASH to this

address. Any additional stake must be at least 100,000 FLASH.

● If there is one tx output then it must be an OP_REG_DG operation that is updating an existing

Delegate

● If there are two tx outputs then the second must send the coins being staked to the special

election address and the first output must be an OP_STAKE_DG operation adding to an

existing Delegate’s stake or an OP_REG_DG operation that is registering a new Delegate.

Operation-specific metadata is provided after the opcode.

Sending rules:

● Anyone can spend these coins without the special election address’ privkey

● All transactions received by this address have a delegateID that they are being staked for.

That delegateID must not be a currently Elected Delegate; coins staked for the Delegate can

only be reclaimed if that Delegate did not win the election or they have completed their

withdrawal from office.

● For each tx input being spent the output address must match the return address in the input’s

corresponding metadata, or if not provided then the output address must match the original

sending address (return to sender).

Special Voting Address

This is a valid FLASH address which has special rules for receiving transactions, and rejects all

sending transactions. When a Delegate casts a vote they send a transaction to this address with the

vote data and they pay a transaction fee for sending the tx. No coin is ever deposited in this address,

it is simply used to make it easier to account for votes. Monitoring this address will effectively monitor

all votes by Delegates.

Receiving Rules:

● There can only be one output tx which uses the OP_RETURN opcode followed by the

OP_DG_VOTE opcode and data

● The OP_DG_VOTE data must validate successfully

Sending Rules:

● No transactions sent to this address can ever be spent

The opcode OP_DG_VOTE is explained in a later section, as are the details relating to how a

Delegate casts votes and how the votes are counted.

Election Registration Form

To register for election as a Delegate a transaction with at least 1,000,000 FLASH must be sent to the

special election address, along with an OP_RETURN txout with the opcode OP_REG_DG which

includes hex-encoded serialized JSON data like:

{

delegatePubkey: [full pubkey],

infoVersion: [number],

displayName: [string],

enabled: [boolean],

FLASH Whitepaper 18

mining: [boolean],

auditURL: [URL],

contacts: [// optional

{

type: [email/chat/IRC/URL/whatever],

address: [address]

},

{

type: [email/chat/IRC/URL/whatever],

address: [address]

}

],

website: [URL] // optional,

registeredTime: [int], // timestamp of first ever registration

}

The registration JSON document must be less than 4Kb when encoded. An example of the script in a

txout[0] which is registering a Delegate:

 OP_RETURN OP_REG_DG [regData] [delegateSig]

A Delegate can update this form at any time by simply providing a new registration form with the

updated data and an incremented ‘infoVersion’ field. No additional stake is required for updates to

this form as long as enough coin is already staked for this Delegate to meet the minimum requirement

of 1,000,000 FLASH.

Explanation of the fields:

● delegatePubkey: This is the full pubkey that identifies the Delegate. All future actions taken by

this Delegate will be signed with this pubkey’s corresponding private key.

● infoVersion: This is a number that is incremented with every update of this Delegate’s

registration form to ensure proper state. Without this any delays in tx replication or chain

reorgs might cause an older version to overwrite a newer version.

● displayName: This is intended to be a human-readable string that will appear in various user

interfaces for identifying this Delegate, in addition to the delegateID.

● enabled: If set to true then this delegateID will be eligible for election. If set to false then it will

not be. When an Elected Delegate wishes to withdraw from their duties then they must set

this to false and await the end of the current election term, and then they can reclaim their

staked coin.

● mining: When set to true then this Delegate is signalling that they want to be a miner, so they

become eligible for election as a Miner. If set to false then this Delegate is not eligible. If this

Delegate is already an Elected Miner they can set this field to false to withdraw from mining. If

registering as a potential Miner then a minimum of 2,000,000 FLASH must be staked.

● auditURL: This is the URL which exposes this Delegate’s audit interface. There is a new API

command which when queried returns information that can be used to prove this node is alive

and to measure certain performance characteristics. It is recommended that a service like

memcached be used when hosting this URL to shield the node from excessive queries.

Auditing is explained in further detail in a later section of this document.

● contacts: This is a JSON array which contains a list of contact objects. Each object specifies

the type of contact address being provided and the address itself. This is intended to provide

a way for the community to contact the owner of this Delegate. This is optional, however the

community is unlikely to vote for a Delegate that they know nothing about.

FLASH Whitepaper 19

● website: This is a URL linking to a website that represents this Delegate or the organization

that owns the Delegate. This is optional, however the community is unlikely to vote for a

Delegate that they know nothing about.

● delegateSig: This registration form can be sent from any address, it doesn’t have to be from

the Delegate directly, however the ‘regData’ JSON object must be signed with the private key

corresponding to the delegatePubkey, and that signature must be placed in this field.

When the registration data is received the delegateID is generated by converting the delegatePubkey

into a FLASH address.

Staking for Delegates

Any address may contribute stake to any Delegate, however no coins may be staked for any

Delegate that has not registered, and the first registration must include at least a 1,000,000 FLASH

stake. The first registration stake must be included with the registration transaction, but further stake

contributions can be provided by sending the coins to the special election address with the

OP_STAKE_DG opcode. The staking transaction must have two outputs with the second sending

the coin to be staked to the special election address (minimum of 100,000 FLASH), and the first

output must have zero value and use the OP_RETURN opcode followed by the OP_STAKE_DG

opcode followed by the delegateID being staked for, and optionally followed by a return address for

the staked funds. If no return address is specified then the funds can only be returned to the sender.

Example:

OP_RETURN OP_STAKE_DG [delegateID] [returnAddress]

It should be noted that staked coins will not be able to be returned until the Delegate they are being

staked for has withdrawn from office and ended has their current election term. To stake coins for a

Delegate is to surrender control of them for as long as that Delegate is running for election and

serving their term(s).

Voting for Delegates

Normal users vote for Delegates by prepending a zero-value tx output to their transaction which uses

the OP_RETURN opcode followed by the OP_VOTE_DG opcode, followed by the list of delegateID’s

to vote for with each transaction output. Votes cast by the tx’s inputs are destroyed and votes are

created with the new tx outputs. The OP_VOTE_DG opcode expects a simple list of delegateID’s,

one for each txout (not counting the first txout which contains this metadata) and the entirety of each

tx output’s coin amount is used to vote for the Delegate described by this array. Example:

 OP_RETURN OP_VOTE_DG [delegateID1] [delegateID2] [delegateID3]

The first delegateID in the OP_VOTE_DG list receives the vote of txout[1], the second delegateID in

the list recieves the vote of txout[2], and so on. If there are more txouts than delegateID’s provided

then the txouts that are missing a corresponding delegateID are simply not counted in the vote. If a

delegateID provided in the OP_VOTE_DG list is not valid then the entire transaction is rejected.

Voting by Delegates

Delegates vote by sending a transaction to the special voting address. Use of this address makes it

easy to account for how and when Delegates vote, and this address has special rules as described in

the Special Voting Address section above. The transaction casting the vote does so by having a

FLASH Whitepaper 20

single tx output that uses the OP_RETURN opcode followed by the OP_DG_VOTE opcode and data

describing the vote.

Votes are described using a JSON object which is passed to the OP_DG_VOTE opcode. Each key

in the voteData object represents a ballot item, and each value indicates the vote itself. Each value in

the voteData JSON object has a maximum size limit of 2Kb and the entire voteData object has a max

size limit of 100Kb. Given the 900M coin supply and the 1M minimum Delegate registration stake

there can never be more than 900 Delegates in the running, and therefore the mapDelegateState

variable that holds voting information can never be more than approximately 90Mb. In practice it

ought to be an order of magnitude smaller.

The opcode OP_DG_VOTE expects three arguments:

OP_RETURN OP_DG_VOTE [delegateID] [voteData] [voteSig]

The ‘voteSig’ argument is a signature of the ‘voteData’ argument, signed with the private key that

corresponds to the delegateID. The ‘voteData’ argument is a hex-encoded serialized JSON

document as follows:

{

 voteHeight: 12527,

minTxFee: 30000000, // satoshis

 txFeePerByte: 110, // satoshis

 miners: [

 delegateID3: 50, // 50% of vote-weight

 delegateID14: 25, // 25% of vote-weight

 delegateID31: 25, // 25% of vote-weight

]

}

Explanation of the keys and values:

● key: The key in this JSON object represents the ballot item for which this vote is being cast.

Each time a tx is sent to update the voteData the update is considered incremental - it is

applied on top of the existing voteData for that Delegate, overwriting any existing values for

given keys. Setting a key’s value to ‘null’ will delete the key and the value, thereby

withdrawing the vote.

● value: This is the value of the vote being cast. The value can be no more than 2Kb in size.

New values for pre-existing keys will overwrite the old value.

Any transaction using the OP_DG_VOTE opcode with a JSON document that differs from the format

described above, or which violates any of the constraints described, is considered invalid and is

discarded. The limitations on the size of the vote data prevents DoS and spam attacks, and the

overall structure of the voting document allows great flexibility for future ballot items. OP_DG_VOTE

transactions must pay the same per-byte transaction fee as every other tx on the network.

The special key ‘voteHeight’ in the voteData is incremented each time a Delegate updates its vote.

This allows the network to apply these vote updates to mapDelegateState in the correct order. If a

Delegate attempts to provide an update with voteHeight 123, for example, without previously

providing update with height 122, then the update for 123 is rejected. If a second update for 123 is

received then it is rejected. If a different txid that claims to be update 123 is included in a block after

FLASH Whitepaper 21

a reorg then the first update 123 is reversed and the second update 123 is applied; the

mapDelegateState data must be kept in sync with the validated votes in the blockchain.

Vote Accounting and Indexing

This voting system has been carefully designed to be as efficient as possible, to add as little

overhead on the blockchain and node processing requirements as possible, in order to facilitate the

highest transactions-per-second rate possible. In addition to performance considerations, it is ideal to

maintain full compatibility with all Bitcoin related tools, so this voting system has been designed to

maintain that backwards compatibility.

Every vote cast, every stake made, and every Delegate registration is performed via a tx output in the

first output position which uses the OP_RETURN opcode followed by a new voting opcode that is

unique to FLASH, followed by the voting metadata. Any Bitcoin-based script interpreter will not parse

the data following the OP_RETURN opcode, but the FLASH script parser will continue reading the

script if there is a voting opcode immediately after the OP_RETURN opcode. Requiring that this

voting metadata be in the first tx output position (txout[0]) assures efficient lookups when discovering

old votes that are being destroyed by new tx outputs. It also increases OP_RETURN script parsing

by skipping the parsing of any OP_RETURN data that is not in the txout[0] position.

To facilitate accounting and indexing in the core code some new variables and structs will be created:

● ‘Delegate’ class: This holds information about a Delegate and methods for polling and

interacting with Delegates

● ‘mapDelegateState’: This is a delegateID-indexed map of Delegate objects

● ‘VoteState’ struct: this holds the current ruleset, the result of the vote, derived from

mapDelegateState

● ‘PendingVote’ struct: This is a struct that contains information about a vote that is pending full

consensus before being counted. Attributes include blockheight, txid, and interpreted vote

data.

● ‘mapPendingVotes’: This is a txid-indexed map of PendingVote structs, used for accessing

PendingVotes by txid. If a tx is removed due to chain reorg then that tx is removed from this

map as well as the multimap mentioned below.

● ‘mmPendingVotesByBlock’: This is a blockheight-indexed multimap of vectors of txid’s. When

the Consensus Height is updated this multimap is scanned to find all PendingVotes that are

now fully confirmed and then their votes are counted. Once all transactions in a discovered

vector are counted, all corresponding txid’s are removed from mapPendingVotes and then the

vector is removed from this mmPendingVotesByBlock.

Given a max coin supply of 900M and a minimum Delegate registration stake amount of 1M, there will

never be more than 900 entries in the mapDelegateState variable. When a Delegate reclaims their

stake their entry in mapDelegateState will be deleted.

Upon receiving a valid Delegate registration transaction each node will check to see if this new

delegateID already exists in mapDelegateState, and will add a new struct for it there if it does not

exist. When receiving valid registration updates each node will overwrite the given delegateID’s entry

in mapDelegateState with the new struct if that the new struct has a higher infoVersion number than

the existing entry.

As each new block is accepted into the blockchain each transaction in the block is checked for voting

metadata in txout[0], and if present it will be validated and noted in mapPendingVotes and

FLASH Whitepaper 22

mmPendingVotesByBlock. Votes are not counted until the Consensus Height has reached or

surpassed that transaction’s blockheight. Every tx has inputs and outputs; any votes previously cast

by the inputs must be subtracted from mapDelegateState and any votes cast by the outputs must be

added.

Each time the Consensus Height changes, which might happen with every new block,

mmPendingVotesByBlock is iterated and each entry with a blockheight at or below the new

Consensus Height is processed and removed from both the multimap and the map. Processing

mmPendingVotesByBlock means to fetch each transaction in the vector being processed, parse the

voting metadata, and update mapDelegateState to count the new votes. If mapDelegateState is

changed after processing the new Consensus Height change then all votes in mapDelegateState are

re-counted and the global VoteState struct is updated to index the current active ruleset. Future

blocks will be validated against this updated ruleset. In this way a running total is maintained for all

votes in mapDelegateState, updated with each Consensus Height change, and the result of the vote

is indexed in structVoteState so that all parameters can be easily and efficiently looked up.

Note: changes to a Delegate’s Miner vote is processed instantly when received by a node, but all

other changes must wait for full finalization by allowing the Consensus Height to reach that vote’s

block.

Calculating Vote Results

The keys in the voteData object are arbitrary however there are several keys which will be utilized by

default when the FLASH network is launched. Other keys will be ignored. Each key in voteData can

use a different method for determining the outcome of the vote, and that method is hardcoded in the

FLASH governance code. Here are explanations of the voting method for each of the voteData keys

supported at launch:

● voteHeight: This is a number that is incremented each time a Delegate updates their vote.

Sequentially ordering vote updates assures that the updates are applied to mapDelegateState

in the correct order.

● minTxFee: This is the minimum transaction fee allowed for any tx, denominated in satoshis.

The outcome of the vote is the weighted median of all Delegate votes, weighted with their

voteWeight.

● txFeePerB: This is the tx fee per byte of the transaction size, denominated in satoshis per

byte. The outcome of the vote is the weighted median of all Delegate votes, weighted with

their voteWeight.

● miners: The outcome of this vote is an array of the top 25 Miner delegateID’s, sorted by

cumulative voteWeight from every Delegate. The voteWeight contribution from a Delegate is

that Delegate’s total voteWeight multiplied by the percentage that the Delegate gave to this

Miner.

Coinbase Transaction and Delegate Signatures

Every block mined will have a coinbase transaction with 0 inputs, similar to most Bitcoin-derived

cryptocurrencies, however FLASH’s coinbase transaction will have a zero-value txout[0] that uses the

OP_RETURN and OP_DG_SIGN opcodes as follows:

OP_RETURN OP_DG_SIGN [delegateID] [delegateSigOfBlockhash]

This txout[0] is proof that the given delegateID was the creator of the block.

FLASH Whitepaper 23

Once every day the coinbase transaction will contain additional outputs to distribute the previous

day’s rewards to Miners and Delegates. These rewards will be distributed as described in the “Miner

and Delegate Reward Mechanics” section above. As each day progresses and tx fees are paid,

those fees are burned, they are temporarily removed from the coin supply. The first block of every

day recreates those burned coins and distributes them to the Miners and Delegates.

Audit Interface and URL

There will be a new API command called getauditpoint which can be used by the community to verify

that this Delegate is online with a blockchain that is in-sync. This command takes no arguments.

When users are choosing a Delegate(s) to vote for from a list, that list ought to show the sync-state of

each Delegate so that the user has information to inform their vote. The response from the

getauditpoint API call will follow the standard Bitcoin API format and might look like this:

{

error: null,

result: {

 auditPoint: {

delegateID: [pubkey],

blockHeight: [chain-tip height],

blockHash: [chain-tip blockhash],

mempoolSz: [number],

timestamp: [current time]

},

delegateSig: [base64 signature with privkey]

},

id: 0

}

Each call of this API will generate a fresh signed message with the node’s current timestamp and

chain-tip information. Delegates that are currently elected or are running for election need to make

this information publicly accessible. It is recommended to use a separate caching proxy in front of

this API call to protect against DoS and spam attacks, and to hide the Delegate’s true IP from the

public, if desired.

Delegate Info Interface

There will be new API command called getdelegateinfo which returns a JSON object revealing

information about every Delegate, both elected and running. The results of this API command will be

used for dashboard displays on community websites and in the Qt wallet. This command has one

optional argument: delegateID. Specifying a delegateID will filter the results to only return voting

status for the specified Delegate, otherwise data for all Delegates will be returned. The data provided

in this API command’s response is derived from the mapDelegateState variable. This information can

be used to see information about all Delegates, including which delegates are voting in which

direction and with how much influence. Example:

FLASH Whitepaper 24

{

error: null,

 result: {

 delegateCount: 326,

 votesCast: 235486723.12345678,

 totalVotesPossible: 900000000.00000000,

 totalVoteWeight: 789437432323.12345678,

 delegates: {

 “Sojgf3w40FSj9fw92jgFSmbZAdqT2”: { // key is delegateID

 infoVersion: 123,

displayName: “This Delegate”,

enabled: true,

mining: true,

auditURL: “http://1.2.3.4:80/audit”,

contacts: [

{

type: “email”,

address: “contact@delegate1.com”

}

],

website: “http://delegate1.com”,

registeredTime: 1567234635883,

lastDGVoteTime: 164264529832,

votesRcvd: 1324523,

 stake: 2000000,

 timeInOffice: 1356542,

 voteWeight: 5673561,

 voteData: {

 minTxFee: 33000000, // satoshis

 txFeePerByte: 100, // satoshis per byte

 miners: [

 delegateID3: 50, // 50% of vote-weight

 delegateID14: 25, // 25% of vote-weight

 delegateID31: 25, // 25% of vote-weight

]

 }

},

“USgs39sdVnkdpa30SDmOP353zvc4”: { // key is delegateID

 infoVersion: 234,

displayName: “Another Delegate”,

enabled: true,

mining: true,

auditURL: “http://2.3.4.5:80/audit”,

contacts: [

{

type: “email”,

address: “contact@delegate2.com”

}

],

website: “http://delegate2.com”,

registeredTime: 165234635812,

FLASH Whitepaper 25

lastDGVoteTime: 164264523825,

 votesRcvd: 526272,

 stake: 1000000,

 timeInOffice: 356548,

 voteWeight: 2673564,

 voteData: {

 minTxFee: 33000000, // satoshis

 txFeePerByte: 100, // satoshis per byte

 miners: [

 delegateID4: 20, // 20% of vote-weight

 delegateID63: 65, // 65% of vote-weight

 delegateID17: 15, // 15% of vote-weight

]

 }

},

}

},

id: 0

}

Vote State Interface

There will be new API command called getvotestate which returns a JSON object revealing the

current state of all ballot items as accounted for in the structVoteState variable. This is the law for the

current block. Example:

{

error: null,

 result: {

 minTxFee: 33000000,

txFeePerByte: 100,

miners: { // map of elected miners

 delegateID4: true,

 delegateID63: true,

 delegateID17: true

}

},

id: 0

}

This API command and structVoteState are intended to only show the result of all votes as of the

previous block’s closing, which makes these results the ruleset that will be applied to the next block

generated. If more details are needed about weights and Delegates then the getdelegateinfo API

command should be used instead.

FLASH Whitepaper 26

Voting User Interface

Both the Qt wallet and the CLI will provide interfaces for voting. The wallets will have configuration

parameters that can be set to control automated voting with coins held in the wallet, as well as

interfaces that show the current state of this wallet’s voting power. Because votes are cast as coins

are spent, not as they are held, the automated voting will allow the user to set a threshold level for the

amount of coin in the wallet that is not voting as specified, and when that threshold is exceeded then

the automation will send that coin back into the wallet with the correct voting preference set. The

voting automation will by default combine all transactions into one output when resending to self,

unless the user has opted out of tx combining.

Miner and Delegate Statistics

Data can be collect for both Miners and Delegates from their published auditURL’s for monitoring how

well synced they are. All Delegates and Miners should rapidly sync the current chain tip and maintain

roughly identical mempool tx count. The auditURL provides a signed message showing this

information from each Delegate and Miner.

Additional Miner statistics can be collected from the blockchain itself, by analyzing the coinbase

transaction to identify which Miners are participating properly. Elected Miners should never miss their

block generation timeslot unless the network is idling, and if a Miner misses too high a percentage of

their timeslots then they should be replaced with a more reliable Miner.

By gathering the necessary information and making it accessible to all users it becomes possible for

the community to make informed decisions about Delegate and Miner elections, and well informed

decisions will lead to an optimally efficient network.

FLASH Whitepaper 27

FLASH Web Wallet -
Account Structure +
Key Generation,
Storage and Recovery

ACCOUNTS IN THE FLASH WEB WALLET ARE STORED IN A

CENTRAL AUTHENTICATION SERVER (CAS).

 id: account ID.

Each CAS

 email: account’s email

account has the

 role: used for authorization, e.g: USER or ADMIN

following fields:

 privateKey: EC crypto private key (encrypted by

 user’s password)

 publicKey: EC crypto public key.

 sc1: user’s share used in recovery procedure (encrypted

 by user’s security answers).

 sc2: server’s share used in recovery procedure

 sc3: administrator’s share used in case the user lost sc1

 and cannot recover himself.

In addition user’s profiles are stored in Flashcoin Key

Server. The information includes: display name, avatar,

country… which varies from app to app.

FLASH Whitepaper 28

FLASH Web Wallet Key
Generation, Storage and
Recovery

Key

generation

at signup

EC crypto keypair is generated at

client side when signing up. The

private key is then encrypted by

user’s password. Recovery keys

are also generated from the private

key, which is a tuple (sc1, sc2,

sc3). After user answers the

security questions, the responses

are then used to encrypt sc1.

FLASH Whitepaper 29

The server stores the following: the

encrypted private key, public key,

sc1 encrypted, security questions,

sc2, sc3 (which is then encrypted

separately by the admin)

FLASH Whitepaper 30

 Key Recovery

The recovery process is

automatically triggered by the

user. After the email is verified,

the client receives sc1 encrypted

and sc2, security questions. By

answering the security questions

correctly the answer is used to

decrypt sc1. From sc1 and sc2,

the private key is restored. User

then needs to provide a new

password and start the process of

protecting and storing keys

following the same as above.

User can also choose a super-secure
mode where the server store an unique sc.
When the recovery mode is activated, user
must provide his/ her share to combine
with the server’s share. If user lost the sc1
(given in the sign-up process) then no one
can recover his/her password. Therefore,
the compulsory participation of user in the
recovery process ensures the security of
user’s share as well as the password.

FLASH Whitepaper 31

FLASH Blockchain

FLASH HAS FORKED THE LITECOIN VERSION OF THE

BLOCKCHAIN TO USE AS A DISTRIBUTED NETWORK

STORAGE SYSTEM. A NUMBER OF SIGNIFICANT

MODIFICATIONS TO THE CODE HAVE BEEN MADE IN ORDER

TO ADDRESS THE WEAKNESSES OF FULLY DECENTRALIZED

NETWORKS:

Network Latency - Block synchronization among the nodes
dramatically slows down the transaction validation (double

spending) speed. FLASH is a distributed network with mining

nodes limited by the Delegates who vote for the miners.

Because of the delegated and limited number of mining nodes,

the network latency should be under 400ms (propagation time

window).

Performance - Two factors that determine the blockchain
performance include Block Synchronization and Block Mining.

FLASH uses cache and index servers to synchronize the

nodes and reset the mining algorithm to the least difficulty

factor. Because we have the trusted network of nodes, there

is no need to continue to increase the degree of difficulty of

mining for the block verification process. FLASH provides a

unique solution to ensure distributed network storage data

integrity.

Security Risk - Block mining is vulnerable with a fully open

distributed blockchain network via 51% and other attacks. The

FLASH Blockchain is not open to the public to mine or

manipulate the blockchain by computational advantage. This

task is maintained by Miners selected by the Elected

Delegates.

FLASH Whitepaper 32

End to End Encryption

In order to ensure no single point of weakness, the design

of the security system and of all encryption functions have

to be done from the web wallet (client node).. As a result,

transactions are encrypted by the recipient’s public key

which are then written into the FLASH blockchain. This

methodology protects from intruders obtaining any

encrypted data on the FLASH database. In order for any

attacker or intruder to decrypt information, they must

compromise the system and crack the Elliptic Curve

Cryptography (ECC) algorithms are used on each key. Even if

someone had a quantum computer and was able to crack ECC

the cost to decrypt a transaction would by far outweigh the

possible gain. For an average computer it would take more than

100 Billion years in computation effort, according to most experts.

Therefore, the cost of cracking the ECC on each transaction far

exceeds the potential return.

Blockchain API

A protocol that empowers Web Application to communicate with

the FLASH BlockChain network. All transactions have been

indexed at the Blockchain API layer to pre-compute and speed

up transaction lookups such as double spending verification

and transaction logs.

FLASH Whitepaper 33

APPENDIX

Wallet Webservice API

Create Account

Name: create_unverified_account

Description: Create unverified account (need to verify via email)

Request params: name, email, ip, callbackLink, g_recaptcha_response

(Google recaptcha response)

Response: {rc: Number}

Set Password and Verify Email

Name: set_password

Description:

Request params: password, privateKey (encrypted private key),

publicKey, token

Response: {rc: Number}

Get Session Token (sso)

Name: get_session_token

Description:

Request params: idToken, resource

Response: { rc: Number, profile : Object { sessionToken: String } }

FLASH Whitepaper 34

Check Session Token (sso)

Name: check_session_token

Description:

Request params: sessionToken, resource

Response: {rc: Number, profile: Object{username: String, email: String} }

Login (sso)

Name:

Description:

Request params: email, password, ip, resource

Response:

Success: {rc: Number, profile: Object{email: String, display_name: String,
gender:

String, ...} }

Update Account

Name: update_account

Description: Update user profile

Request params: display_name, gender, profile_pic_url, about, timezone ...

Response: {rc: Number }

Get Profile

Name: get_profile

Description: Get user profile

Request params: {}

Response: {rc: Number, profile: {username: String, email: String, display_

name: String, profile_pic_url: String …} }

FLASH Whitepaper 35

Set PIN

Name: set_pin

Description: Set PIN

Request params: pin

Response:

Success: {rc: Number}

Check PIN

Name: check_pin

Description: Check if PIN is correct

Request params: pin

Response:

Success: {rc: Number}

Change PIN

Name: change_pin

Description: Change the PIN

Request params: old_pin, new_pin

Response:

Success: {rc: Number}

Get Contact Details

Name: get_contact_detail_by_email

Description: Get contact details by email

Request params: contact_email

Response:

Success: {rc: Number, profile: {username: String, email: String, display_

name: String, gender: String, profile_pic_url: String, …} }

FLASH Whitepaper 36

Get Profile

Name: get_profile

Description: Get user profile

Request params: {}

Response: {rc: Number, profile: {username: String, email: String, display_

name: String, profile_pic_url: String …} }

Get Users

Name: get_users_by_uid

Description: Get users information by user id

Request params: [‘user1’, ‘user2’, …]

Response:

Success: {rc: Number, accounts: [account1, account2, …] }

Get Roster

Name: ros_get

Description: Get contact list of a user

Request params: {}

Response:

Success: {rc: Number, roster: {total_subs: Number, subs: [], …}

Roster Operation

Name: ros_op

Description: operate roster, where operation could be REQUEST, APPROVE,
REMOVE

Request params: op, from, to

Response:

Success: {rc: Number}

Notification: notify to related users

FLASH Whitepaper 37

Create Wallet

Name: create_flash_wallet

Description: Create a new wallet

Request params: idToken, wallet_secret

Response:

Success: {rc: Number, wallet: {passphrase: String, wallet_id: String, address:
String }

Search Wallet

Name: search_wallet

Description: Search for wallet by keyword, to send money to

Request params: start, size, term

Response:

Success: {rc: Number, criteria, wallets: [wallet1, wallet2, ..], total_wallets:
Number }

Get My Wallets

Name: get_my_wallets

Description: Get my wallets (currently only support 1 wallet)

Request params: {}

Response:

Success: {rc: Number, my_wallets: [], total_wallets: Number}

Add Transaction

Name: add_txn

Description: Push transaction to blockchain and add transaction log

Request params: receiver_id, amount, currency_type,

receiver_public_address, transaction_id, memo, request_id,

transaction_hex (signed) Response:

Success: {rc: Number, id: String}

Notification: notify to the recipient about the new transaction

FLASH Whitepaper 38

Get Transactions Log

Name: get_txns

Description: Get transaction log of current user

Request params: date_from, date_to, order, start, size

Response:

Success: {rc: Number, txns: [tx1, tx2, ...], total_txns: Number}

Get Transaction Log By Id

Name: get_transaction_by_id

Description: Get transaction detail by id

Request params: transaction_id

Response:

Success: {rc: Number, txn: {...} }

Create Unsiged Transaction

Name: create_unsigned_raw_txn

Description: Create a unsigned transaction to be signed by the owner later

Request params: from_address, to_address, amount

Response:

Success {rc: Number, transaction: {...} }

Get Transaction Details

Name: get_transaction_details

Description: Get transaction details from blockchain

Request params: transaction_id

Response:

Success: {rc: Number, transaction: {...} }

FLASH Whitepaper 39

Get Balance

Name: get_balance

Description: Get wallet balance from blockchain api

Request params: {}

Response:

Success {rc: Number, balance: Number}

Add Money Request

Name: add_money_request

Description:

Request params: to, amount, note

Response:

Success: {rc: Number, id: String }

Notification: notify to the requested user

Get Money Requests

Name: get_requests

Description:

Request params: date_from, date_to, status, start, size, type

Response:

Success: {rc: Number, money_requests: [req1, req2, ...], total_money_reqs:
Number}

Mark Money Request as Accepted

Name: mark_accepted_money_requests

Description:

Request params: receiver_id, request_id, note_processing

Response:

Success {rc: Number}

FLASH Whitepaper 40

Mark Money Request as Rejected

Name: mark_rejected_money_requests

Description:

Request params: receiver_id, request_id, note_processing

Response

Success {rc: Number}

Mark Money Request as Cancelled

Name: mark_cancelled_money_requests

Description:

Request params: sender_id, request_id, note_processing

Response

Success {rc: Number}

Mark Money Request as Read

Name: mark_read_money_requests

Description:

Request params: receiver_id, request_ids: Array<{request_id,

sender_bare_uid}> Response

Success {rc: Number}

FLASH Whitepaper 41

Blockchain APIs (in progress)

Push transaction to the blockchain

Name: push_transaction

Description: push a transaction raw format (hexa encoding) to the blockchain

Request params: transaction hex

Response: {}

Send token

Name: send_token

Description: send token (coin) to a wallet identified by public address

Request params: to_public_address, amount, message

Response: {}

