
Robin Linus Follow
Creator of https://nimiq.com
Jun 14, 2017 · 7 min read

Nimiq: A Frictionless Payment Protocol
Native to the Web
中文

Introduction
On June 6th we published the Nimiq Beta Testnet to get early

community feedback and gather real-world data. Some people were

missing the nerdy talk. So here it is:

Nimiq is a frictionless peer-to-peer payment protocol for the World Wide

Web. It is a third-generation Blockchain protocol combining elements of

Bitcoin and Ethereum, streamlined for the web platform. And without a

doubt, it is open source and fully decentralized.

Browsers are �rst-class citizens in the Nimiq distributed network. They are

able to establish consensus with the network, and enable true peer-to-peer

payments from within, all without a trusted third party. In comparison to

conventional cryptocurrencies, this browser-�rst approach lowers barriers

of entry by orders of magnitudes for developers, customers and merchants.

Overview
The main challenge of a web-based Blockchain is to translate the core

Blockchain components to the web platform:

Network for establishing P2P connections.

Storage for persistent keys and Blockchain data.

•

•

https://medium.com/@RobinLinus?source=post_header_lockup
https://medium.com/@RobinLinus?source=post_header_lockup
https://medium.com/nimiq-translations/nimiq-%E4%B8%80%E4%B8%AAweb%E5%8E%9F%E7%94%9F%E7%9A%84%E6%97%A0%E6%91%A9%E6%93%A6%E7%9A%84%E6%94%AF%E4%BB%98%E5%8D%8F%E8%AE%AE-6a8250b21146
https://nimiq.com/betanet/
https://github.com/nimiq-network/core


Crypto for hashing, signing and verifying.

In addition, the protocol must be streamlined for the constraints of the

web:

Compression of Blockchain data to sync within seconds instead of

hours.

Instant and scalable transactions so over-the-counter payments

are practical.

Simplicity means we do only one thing and we do it better than

anyone else: payments.

Blockchain Parameters streamlined for our browser-�rst

approach.

Cross-Chain Compatibility with other Blockchains such as

Ethereum for advanced smart contract features.

Translating the Blockchain Primitives to
the Web Platform

Network

Nimiq’s peer-to-peer network uses WebRTC and WebSocket

connections.

There are two types of nodes in the Nimiq network: Backbone Nodes

and Browser Nodes. Both types use the same isomorphic JavaScript

code base.

Backbone Nodes are based on NodeJS and run on servers. They

communicate with each other via WebSockets, and they act as entry

point and signaling server for Browser Nodes to establish browser-to-

browser WebRTC connections.

Browser Nodes are built upon browser engines and therefore they are

completely installation-free. To connect to the network, they establish a

WebSocket connection to at least one Backbone Node. Once they have

established their �rst connection, they start to establish browser-to-

browser connections using the Backbone Node as signaling server.

Browser Nodes can also act as signaling server for further browser-to-

browser connections.

•

•

•

•

•

•

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket


In the long run, Browser Nodes will mainly be light-clients, and they

won’t necessarily participate as miners. Their main purpose is to

establish consensus quickly to prove their accounts’ balances and send

transactions into the network. Serious Miners might prefer to run

mainly Backbone Nodes for performance and convenience reasons,

even though we want to keep the bene�t of running a backbone node

low in order to balance incentives in the direction of our browser-�rst

approach. Moreover, even Browsers running light-clients will

contribute resources to the network: They share the (compressed)

Blockchain data with other browsers to reduce the network load on the

backbone nodes.

There are some drawbacks of this approach:

Depending on the user’s NAT con�guration, direct peer-to-peer

connections may not be able to be established. They would need a

TURN server to connect to other browsers. In this case, it makes

more sense to connect only to Backbone Nodes via WebSockets,

because the network load on TURN servers would be unnecessary

high.

Powerful browser APIs are restricted to secure origins. So for

browsers to connect, Backbone Nodes need to provide an

encrypted connection via SSL. This requires a domain and an SSL

certi�cate. For easy and cheap access to domains, we will provide

dynamic DNS and Letsencrypt packaged in an installer.

Depending on the user’s �rewall con�guration, connections to

non-standard ports may not be able to be established. In this case,

at least some nodes need to run on the standard 443 port. To avoid

running the node as root, it is a good idea to use NGINX as reverse

proxy.

Storage

Browser Nodes use the IndexedDB API to store Blockchain data and

keys on the user’s hard drive. Since the browser can’t store gigabytes of

data, we compress the Blockchain with the Mini-Blockchain scheme

(see Compression). In the beta testnet, the private key is stored

unencrypted and gets deleted if the user clears his browser history.

In the mainnet we will have much higher security standards:

With Chrome’s Storage Persistence API the data survives even if you

clear your browser data. The private key will always be stored

encrypted. Furthermore, we will provide users with a simple app to

1.

2.

3.

https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT
https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features
https://letsencrypt.org/
https://developer.mozilla.org/en/docs/Web/API/IndexedDB_API
https://developers.google.com/web/updates/2016/06/persistent-storage


backup their key in a printed paper wallet. We are also planning on

supporting cold-wallets via Web USB or Web Bluetooth.

Crypto
Since performance is security relevant, we need performant crypto

primitives. A JavaScript implementation would not be su�cient.

Betanet Crypto

The crypto in the preliminary beta testnet is based on the WebCrypto

APIs to reach near native performance. The WebCrypto API is not very

rich and leads to too many sub-optimal design decisions. Therefore we

won’t use it for the mainnet.

Proof-of-Work Algorithm: We use SHA-256, because it is the only

hash function supported by WebCrypto, and is su�cient for our �rst

public testnet.

Digital Signing Algorithm: We use the NIST curve P-256, because it is

the only curve supported by WebCrypto.

Mainnet Crypto (preliminary)

The cryptographic primitives in the mainnet will be based on

WebAssembly for near native performance and full �exibility in our

choice of crypto algorithms.

Proof-of-Work Algorithm: We will use a more sophisticated PoW in

the mainnet because SHA-256 will lead to centralized mining. The

mainnet PoW should be memory-hard & low energy for truly

decentralized mining with regular hardware. There is no �nal decision

on any speci�c algorithm yet. We are investigating multiple candidates

such as Argon2 (too slow though) or ETHash, and we are very open to

suggestions by the community.

Proof-of-Stake Algorithm: We would strongly prefer to switch to a

Proof-of-Stake Algorithm in the long run to get to a more energy-

e�cient Blockchain system. We are following the research of other

projects such as Ethereum, and we are investigating multiple

candidates such as Ouroboros. Just as well, we are very open to

suggestions by the community.

Digital Signing Algorithm: We use Ed25519 because it uses “nothing

up my sleeves parameters” chosen for performance and it is becoming

an industry standard.

https://developers.google.com/web/updates/2016/03/access-usb-devices-on-the-web
https://developers.google.com/web/updates/2015/07/interact-with-ble-devices-on-the-web
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/WebAssembly
https://password-hashing.net/submissions/specs/Argon-v3.pdf
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://eprint.iacr.org/2016/889.pdf


More Fundamental Browser APIs
ES6 Classes for a clear and simple object oriented design.

Promises and the beloved async/await to escape from callback hell.

ArrayBu�er and views to serialize Blockchain data to byte level for

crypto operations, network and storage.

Streamlining the protocol for the
constraints of the Web Platform

Compression

It is nonsensical to have web users download gigabytes of Blockchain

data to establish consensus. Especially in the case of a weak network

connection, which would make this nearly impossible. So we need to

compress the data such that light-clients can synchronize within

seconds.

That’s where the Mini-Blockchain Scheme comes into play: It introduces

an Accounts Tree (a Merkle Patricia Tree) which has multiple advantages

in comparison to the design of Bitcoin:

It simpli�es transactions. The end user doesn’t need to deal with

the concept of unspent outputs. Only an account and a balance is

contained.

The user can download only the headers of the Blockchain plus

simple cryptographic proofs for account balances, which breaks

down to downloading only a couple of hundred kilobytes instead

of gigabytes without losing trust or security.

Old blocks can be discarded because the complete state is stored in

the Accounts Tree.

Nano clients can use signed checkpoints to keep the headers chain

constant size. Additionally, the full Blockchain up to each

checkpoint will be provided for download to make public

veri�cation of these checkpoints easy. We will proceed to

implement the Mini Blockchain Scheme as per development plan.

It is easy to listen for balance changes.

Instant transactions

•

•

•

•

•

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
http://cryptonite.info/wiki/index.php?title=Main_Page
https://github.com/ethereum/wiki/wiki/Patricia-Tree


Based on “The Bitcoin Lightning Network: Scalable O�-Chain Instant

Payments” Nimiq implements Hashed Timelock Contracts to enable

payment channels and within those scalable instant o�-chain

transactions. This solves the scalability issues beyond micro-payments.

Moreover, they enable atomic swaps for cross-chain interoperability.

There are also approaches to enable onion routing on top the Lightning

Network to provide anonymity in a way similar to the Tor Browser.

Simplicity: No scripting language.

Simplicity is the best heuristic to building a secure system. So the only

feature of Nimiq is fast and secure payments from UserA to UserB.

Nimiq intentionally doesn’t have a scripting language, because

Ethereum already solves the smart contract problem better then we

could ever do. We do not try to compete in this �eld. We want to be

compatible with Ethereum such that Nimiq users can easily use

Ethereum’s smart contract features if they want to.

There is one exception to the “no smart contracts” approach: For the

Lightning Network there will be a hashed timelock contract hardcoded

into the protocol.

Blockchain Parameters (preliminary)

Block time: 1 minute (inspired by the results of On the Security and

Performance of Proof of Work Blockchains)

Block reward: starts with 5 Nimiq (NIM); halves every ~2'100'000

blocks. This approach models Bitcoin’s approach, while taking into

account that Nimiq’s block time is 10 times faster. (In the betanet

the reward is just constant)

Max Block size: 1 MB

Di�culty adjustment: Every 10 blocks

Total supply: 21 Mio Coins divisible by 10⁸ (just like Bitcoin)

Cross-Chain Compatibility

Hash Timelock Contracts not just allow o�-chain transactions and

scalability. We will use them for cross-chain transactions to become

compatible with the great work of projects like Ethereum and Bitcoin.

This allows Nimiq users to use the advanced smart contract features of

Ethereum and it allows users of other cryptocurrencies to easily

exchange into Nimiq without an intermediary.

•

•

•

•

•

https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2016/555.pdf
https://en.bitcoin.it/wiki/Controlled_supply


Conclusion
Nimiq introduced Blockchain technology native to the World Wide

Web. In comparison to conventional cryptocurrencies, this approach

lowers barriers of entry by orders of magnitudes and will foster mass-

adoption of cryptocurrencies.

Stay Tuned
This document is work-in-progress and will be updated regularly.

To stay tuned:

Follow our Github repository

Join our Slack Channel

Join our Telegram Channel

Follow us on Twitter

Follow us on Youtube

Read More about Nimiq

Website

Beta Testnet

Whitepaper

Team

Contribution Terms

•

•

•

•

•

•

•

•

•

•

. . .

DISCLAIMER: None of the statements must be viewed as an endorsement

or recommendation for Nimiq, any cryptocurrency, or investment product.

Neither the information, nor any opinion contained herein constitutes a

solicitation or o�er by the creators or participants to buy or sell any

securities or other �nancial instruments or provide any investment advice

or service.

https://github.com/nimiq-network/core
https://nimiq-slackin.herokuapp.com/
https://t.me/joinchat/AAAAAEJW-ozFwo7Er9jpHw
https://twitter.com/nimiqnetwork
https://www.youtube.com/channel/UCJ1qu3KXwfmkGwBkU8F1jQg
https://nimiq.com/
https://nimiq.com/betanet
https://medium.com/nimiq-network/nimiq-a-peer-to-peer-payment-protocol-native-to-the-web-ffd324bb084
https://nimiq.com/team
https://medium.com/nimiq-network/nimiq-network-token-sale-terms-9af2e7fd6228





